Mechano- and thermosensitivity of injured muscle afferents.
نویسندگان
چکیده
Injury of limb nerves leading to neuropathic pain mostly affects deep somatic nerves including muscle nerves. Here, we investigated the functional properties of injured afferent fibers innervating the lateral gastrocnemius-soleus muscle 4-13 h [time period (TP) I] and 4-7 days (TP II) after nerve crush in anesthetized rats using neurophysiological recordings from either the sciatic nerve (165 A-, 137 C-fibers) or the dorsal root L(5) (43 A-, 28 C-fibers). Ongoing activity and responses to mechanical or thermal stimulation of the injury site of the nerve were studied quantitatively. Of the electrically identified A- and C-fibers, 5 and 38% exhibited ectopic activity, respectively, in TP I and 51 and 61%, respectively, in TP II. Thus all afferent fibers in an injured muscle nerve developed ectopic activity since ∼ 50% of the fibers in a muscle nerve are somatomotor or sympathetic postganglionic. Ongoing activity was present in 50% of the afferent A-fibers (TP II) and in 53-56% of the afferent C-fibers (TP I and II). In TP II, mechanical, cold, and heat sensitivity were present in 91, 63, and 52% of the afferent A-fibers and in 50, 40, and 66% of the afferent C-fibers. The cold and heat activation thresholds were 5-27 and 35-48°C, respectively, covering the noxious and innocuous range. Most afferent fibers showed combinations of these sensitivities. Mechano- and cold sensitivity had a significantly higher representation in A- than in C-fibers, but heat sensitivity had a significantly higher representation in C- than in A-fibers. These functional differences between A- and C-fibers applied to large- as well as small-diameter A-fibers. Comparing the functional properties of injured muscle A- and C-afferents with those of injured cutaneous A- and C-afferents shows that both populations of injured afferent neurons behave differently in several aspects.
منابع مشابه
Encoding of compressive stress during indentation by group III and IV muscle mechano-nociceptors in rat gracilis muscle.
The mechanical state encoded by group III and IV muscle afferents, putative mechano-nociceptors, during indentation was examined using an isolated muscle-nerve preparation in a rat model. Gracilis muscle and its intact innervation were surgically removed from the medial thigh of the rat hindlimb and placed in a dish containing rodent synthetic interstitial fluid. The tendons of the muscle were ...
متن کاملThe effect of pinna reflex and dynamic stretch on spike discharge of single ?-axons and spindle afferents in caudal muscle spindles in rat
The ?-axons supplying muscle spindle (MS) induce a particular pattern of activity in spindle Ia and II afferents on contraction. From a dynamic viewpoint, the Ia shows increasing spike rates, but II-afferents do not show any activity. For evaluation of nerve fiber activity, spike amplitude (SA) is suggested to measure it as well as its benefit of diagnosing clinical symptoms. This paper aims to...
متن کاملThe effect of pinna reflex and dynamic stretch on spike discharge of single ?-axons and spindle afferents in caudal muscle spindles in rat
The ?-axons supplying muscle spindle (MS) induce a particular pattern of activity in spindle Ia and II afferents on contraction. From a dynamic viewpoint, the Ia shows increasing spike rates, but II-afferents do not show any activity. For evaluation of nerve fiber activity, spike amplitude (SA) is suggested to measure it as well as its benefit of diagnosing clinical symptoms. This paper aims to...
متن کاملInjured versus uninjured afferents: Who is to blame for neuropathic pain?
THE role of different classes of afferents in neuropathic pain is a controversial issue. The debate revolves around two questions: (1) What is the role of injured and uninjured afferents in neuropathic pain? (2) What is the role of myelinated and unmyelinated fibers? Although it is commonly accepted that sensitization of central painprocessing neurons is involved in neuropathic pain, it is uncl...
متن کاملActivation of the galanin receptor 2 in the periphery reverses nerve injury-induced allodynia
BACKGROUND Galanin is expressed at low levels in the intact sensory neurons of the dorsal root ganglia with a dramatic increase after peripheral nerve injury. The neuropeptide is also expressed in primary afferent terminals in the dorsal horn, spinal inter-neurons and in a number of brain regions known to modulate nociception. Intrathecal administration of galanin modulates sensory responses in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 105 5 شماره
صفحات -
تاریخ انتشار 2011